Monday, 28 August 2017

เฉลี่ยเคลื่อนที่ สถิติ ตัวอย่างเช่น


ค่าเฉลี่ยเคลื่อนที่ตัวอย่างนี้สอนวิธีคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้เกิดความผิดปกติ (ยอดเขาและหุบเขา) เพื่อรับรู้แนวโน้มได้ง่ายขึ้น 1. ขั้นแรกให้ดูที่ซีรี่ส์เวลาของเรา 2. ในแท็บข้อมูลคลิกการวิเคราะห์ข้อมูล หมายเหตุ: ไม่สามารถหาปุ่ม Data Analysis คลิกที่นี่เพื่อโหลด Add-in Analysis ToolPak 3. เลือก Moving Average และคลิก OK 4. คลิกที่กล่อง Input Range และเลือกช่วง B2: M2 5. คลิกที่ช่อง Interval และพิมพ์ 6. 6. คลิกที่ Output Range box และเลือก cell B3 8. วาดกราฟของค่าเหล่านี้ คำอธิบาย: เนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและจุดข้อมูลปัจจุบัน เป็นผลให้ยอดเขาและหุบเขาจะเรียบออก กราฟแสดงแนวโน้มที่เพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกได้เนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้เพียงพอ 9. ทำซ้ำขั้นตอนที่ 2 ถึง 8 สำหรับช่วงที่ 2 และช่วงที่ 4 ข้อสรุป: ช่วงที่ใหญ่กว่ายอดเนินและหุบเขาจะยิ่งเรียบขึ้น ระยะห่างที่สั้นลงค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่จะใกล้เคียงกับจุดข้อมูลที่แท้จริงมากขึ้นวิธีการคำนวณค่าเฉลี่ยเคลื่อนที่จะถูกปิดสมมติว่ามีช่วงเวลาที่ระบุด้วยและมีค่าตัวแปรที่เหมือนกัน ก่อนอื่นเราต้องตัดสินใจระยะเวลาของค่าเฉลี่ยเคลื่อนที่ สำหรับชุดเวลาสั้น ๆ เราใช้ช่วงเวลา 3 หรือ 4 ค่า สำหรับชุดเวลานานระยะเวลาอาจเป็น 7, 10 หรือมากกว่า สำหรับชุดข้อมูลรายไตรมาสเราคำนวณค่าเฉลี่ยโดยเฉลี่ยที่ใช้เวลา 4 ไตรมาสในแต่ละครั้ง คำนวณเป็นรายเดือนโดยคำนวณค่าเฉลี่ยเคลื่อนที่แบบเคลื่อนที่ 12 เดือน สมมติว่าชุดข้อมูลเวลาที่กำหนดเป็นปีและเราได้ตัดสินใจคำนวณค่าเฉลี่ยเคลื่อนที่ 3 ปี ค่าเฉลี่ยเคลื่อนที่ที่แสดงโดยคำนวณตามด้านล่างค่าเฉลี่ยค่าเฉลี่ยของข้อมูลชุดข้อมูล (การสังเกตระยะห่างเท่า ๆ กัน) จากช่วงเวลาต่อเนื่องหลายช่วง เรียกว่าย้ายเนื่องจากมีการคำนวณใหม่อย่างต่อเนื่องจากข้อมูลใหม่จะพร้อมใช้งานดำเนินการโดยการลดค่าที่เก่าสุดและเพิ่มมูลค่าล่าสุด ตัวอย่างเช่นค่าเฉลี่ยเคลื่อนที่ของยอดขายในหกเดือนอาจคำนวณได้โดยคำนวณยอดขายเฉลี่ยตั้งแต่เดือนมกราคมถึงเดือนมิถุนายนจากนั้นยอดขายโดยเฉลี่ยของเดือนกุมภาพันธ์ถึงเดือนกรกฎาคมถึงเดือนมีนาคมถึงเดือนสิงหาคมเป็นต้น ค่าเฉลี่ยเคลื่อนที่ (1) ลดผลกระทบของรูปแบบชั่วคราวของข้อมูล (2) ปรับปรุงพอดีข้อมูลให้เป็นเส้น (กระบวนการที่เรียกว่าการทำให้ราบเรียบ) เพื่อแสดงแนวโน้มข้อมูลให้ชัดเจนขึ้นและ (3) เน้นค่าใด ๆ เหนือหรือต่ำกว่า แนวโน้ม หากคุณกำลังคำนวณสิ่งที่มีความแปรปรวนสูงมากสิ่งที่ดีที่สุดที่คุณอาจทำได้คือคิดค่าเฉลี่ยเคลื่อนที่ ฉันต้องการทราบว่าค่าเฉลี่ยเคลื่อนที่เป็นข้อมูลอย่างไรดังนั้นฉันจึงมีความเข้าใจในวิธีที่เรากำลังทำอยู่ เมื่อคุณพยายามคิดตัวเลขที่เปลี่ยนแปลงบ่อยครั้งที่ดีที่สุดที่คุณสามารถทำได้คือคำนวณค่าเฉลี่ยเคลื่อนที่ การวิเคราะห์อนุกรมเวลา (TSA) ค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่โดยใช้ชุดข้อมูลแบบเดิมค่าเฉลี่ยหมายถึงค่าสถิติแรกที่มีประโยชน์มากที่สุดในการคำนวณ เมื่อข้อมูลอยู่ในรูปแบบของชุดเวลาซีรี่ส์หมายถึงการวัดที่เป็นประโยชน์ แต่ไม่ได้สะท้อนถึงลักษณะพลวัตของข้อมูล ค่าเฉลี่ยที่คำนวณจากช่วงสั้น ๆ ก่อนหน้าช่วงเวลาปัจจุบันหรือตรงกลางในช่วงเวลาปัจจุบันมักมีประโยชน์มากกว่า เนื่องจากค่าเฉลี่ยดังกล่าวจะแปรผันหรือเคลื่อนย้ายเนื่องจากระยะเวลาปัจจุบันจะเคลื่อนที่จากเวลา t 2, t 3 เป็นต้นเรียกว่าค่าเฉลี่ยเคลื่อนที่ (Mas) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคือ (โดยปกติ) ค่าเฉลี่ยที่ไม่มีการถัวเฉลี่ยของค่าก่อนหน้า k ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังเป็นหลักเหมือนกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แต่มีส่วนร่วมกับค่าเฉลี่ยที่ถ่วงน้ำหนักโดยความใกล้ชิดกับเวลาปัจจุบัน เนื่องจากไม่มีตัวอักษร แต่เป็นชุดค่าเฉลี่ยเคลื่อนที่ทั้งหมดสำหรับชุดใดก็ตามชุดของ Mas สามารถถูกจัดวางลงบนกราฟวิเคราะห์เป็นชุดและใช้ในการสร้างแบบจำลองและการคาดการณ์ ช่วงของแบบจำลองสามารถสร้างโดยใช้ค่าเฉลี่ยเคลื่อนที่และเป็นที่รู้จักในรูปแบบ MA ถ้าโมเดลดังกล่าวรวมกับโมเดลอัตถิภาวนิยม (AR) รูปแบบคอมโพสิตที่เป็นที่รู้จักกันในชื่อ ARMA หรือ ARIMA (แบบบูรณาการ) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเนื่องจากชุดเวลาสามารถถือได้ว่าเป็นชุดของค่า, t 1,2,3,4, n ค่าเฉลี่ยของค่าเหล่านี้สามารถคำนวณได้ ถ้าเราคิดว่า n มีขนาดใหญ่มากและเราเลือกจำนวนเต็ม k ซึ่งน้อยกว่า n เราสามารถคำนวณชุดค่าเฉลี่ยบล็อกหรือค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ (ของคำสั่ง k): แต่ละค่าจะแสดงค่าเฉลี่ยของค่าข้อมูลในช่วงเวลาสังเกตการณ์ k โปรดทราบว่า MA ที่เป็นไปได้ครั้งแรกของคำสั่ง k GT0 คือสำหรับ t k โดยทั่วไปเราสามารถลด subscript พิเศษในนิพจน์ด้านบนและเขียนได้: ค่านี้ระบุว่าค่าเฉลี่ยที่เวลา t เป็นค่าเฉลี่ยที่ง่ายของค่าที่สังเกตได้ ณ เวลา t และขั้นตอน k-1 ก่อนหน้า ถ้าใช้น้ำหนักที่ลดการมีส่วนร่วมของการสังเกตที่ไกลออกไปในเวลาค่าเฉลี่ยเคลื่อนที่จะกล่าวได้ว่าเป็นแบบเรียบ ค่าเฉลี่ยเคลื่อนที่มักใช้เป็นรูปแบบของการคาดการณ์โดยที่ค่าประมาณสำหรับชุดในเวลา t 1, S t1 ถูกนำมาเป็น MA สำหรับระยะเวลาถึงและรวมถึงเวลา t เช่น. การประมาณในปัจจุบันคำนวณจากค่าเฉลี่ยที่บันทึกไว้ก่อนหน้านี้และรวมถึงวันวาน (สำหรับข้อมูลรายวัน) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถเห็นได้ว่าเป็นรูปแบบการทำให้เรียบ ในตัวอย่างที่แสดงด้านล่างชุดข้อมูลมลพิษทางอากาศที่แสดงในบทนำสู่หัวข้อนี้ได้รับการเพิ่มขึ้นโดยเส้นค่าเฉลี่ยเคลื่อนที่ 7 วัน (MA) ซึ่งแสดงเป็นสีแดง ที่สามารถมองเห็นได้สาย MA ช่วยให้จุดสูงสุดและรางในข้อมูลเป็นไปอย่างราบรื่นและเป็นประโยชน์ในการระบุแนวโน้ม สูตรคำนวณการคำนวณล่วงหน้าหมายถึงจุดข้อมูล k -1 จุดแรกไม่มีค่า MA แต่หลังจากนั้นการคำนวณจะขยายไปยังจุดข้อมูลสุดท้ายในชุดข้อมูล ค่าเฉลี่ยของวัน PM10 แหล่งที่มาของ Greenwich: London Air Quality Network, londonair. org. uk เหตุผลหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในลักษณะที่อธิบายไว้คือค่าที่คำนวณได้สำหรับช่วงเวลาทั้งหมดตั้งแต่เวลา tk ขึ้นไปจนถึงปัจจุบันและ เป็นวัดใหม่ที่ได้รับสำหรับเวลา t 1, MA สำหรับเวลา t 1 สามารถเพิ่มไปยังชุดที่คำนวณแล้ว นี่เป็นขั้นตอนง่ายๆสำหรับชุดข้อมูลแบบไดนามิก อย่างไรก็ตามมีบางประเด็นเกี่ยวกับแนวทางนี้ มีเหตุผลที่จะยืนยันว่าค่าเฉลี่ยในช่วง 3 ช่วงสุดท้ายกล่าวคือควรตั้งอยู่ที่เวลา t -1 ไม่ใช่เวลา t และสำหรับ MA มากกว่าจำนวนคู่ของระยะเวลาบางทีมันควรจะอยู่ที่จุดกึ่งกลางระหว่างสองช่วงเวลา วิธีแก้ปัญหานี้คือการใช้การคำนวณ MA ซึ่งอยู่ตรงกลางซึ่ง MA ในเวลา t เป็นค่าเฉลี่ยของชุดสมมาตรของค่ารอบ t แม้จะมีประโยชน์อย่างเห็นได้ชัด แต่วิธีนี้ใช้ไม่ได้โดยทั่วไปเนื่องจากต้องการข้อมูลที่พร้อมใช้งานสำหรับเหตุการณ์ในอนาคตซึ่งอาจจะไม่ใช่กรณีนี้ ในกรณีที่การวิเคราะห์ทั้งหมดเป็นชุดที่มีอยู่การใช้ Mas ไว้ตรงกลางอาจเป็นที่นิยมกว่า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจถือได้ว่าเป็นรูปแบบหนึ่งของการปรับให้เรียบลบองค์ประกอบความถี่สูงบางส่วนของชุดเวลาและเน้นแนวโน้ม (แต่ไม่ลบ) ในลักษณะเดียวกันกับแนวคิดทั่วไปของการกรองแบบดิจิทัล แท้จริงค่าเฉลี่ยเคลื่อนที่คือรูปแบบของตัวกรองเชิงเส้น คุณสามารถใช้การคำนวณค่าเฉลี่ยเคลื่อนที่เป็นชุดที่ได้รับการปรับให้เรียบขึ้นแล้วเช่นการทำให้เรียบหรือกรองชุดที่เรียบขึ้นไปแล้ว ตัวอย่างเช่นมีค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 เราสามารถพิจารณาว่าคำนวณโดยใช้น้ำหนักดังนั้น MA ที่ x 2 0.5 x 1 0.5 x 2 ในทำนองเดียวกัน MA ที่ x 3 0.5 x 2 0.5 x 3 ถ้าเรา เราใช้ 0.5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0.25 x 3 เช่นการกรองแบบ 2 ขั้นตอน กระบวนการ (หรือ convolution) ได้สร้างค่าเฉลี่ยเคลื่อนที่แบบสมมาตรที่มีการถ่วงน้ำหนักที่มีการเปลี่ยนแปลงโดยมีน้ำหนัก หลาย convolutions สามารถผลิตค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักค่อนข้างซับซ้อนซึ่งบางส่วนมีการใช้งานเฉพาะในสาขาพิเศษเช่นในการคำนวณการประกันชีวิต ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการลบเอฟเฟ็กต์เป็นระยะ ๆ หากคำนวณด้วยระยะเวลาเป็นระยะ ๆ ตามที่ทราบ ตัวอย่างเช่นเมื่อมีข้อมูลรายเดือนข้อมูลตามฤดูกาลสามารถเปลี่ยนแปลงได้โดยการใช้ค่าเฉลี่ยเคลื่อนที่ 12 เดือนที่สมมาตรกับทุกเดือนที่มีการถ่วงน้ำหนักอย่างเท่าเทียมกันยกเว้นกรณีที่ 1 และครั้งสุดท้ายที่มีการถ่วงน้ำหนักด้วย 12 เนื่องจากมี เป็นเวลา 13 เดือนในรูปแบบสมมาตร (ปัจจุบัน, t. - 6 เดือน) ทั้งหมดถูกแบ่งโดย 12 ขั้นตอนที่คล้ายกันสามารถนำมาใช้สำหรับระยะเวลาที่กำหนดไว้อย่างชัดเจน ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก (Expedential Weighted Moving Average - EWMA) โดยใช้สูตรค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ: การสังเกตทั้งหมดมีการถ่วงน้ำหนักอย่างเท่าเทียมกัน ถ้าเราเรียกว่าน้ำหนักเท่ากันนี้อัลฟา t แต่ละ k น้ำหนักจะเท่ากับ 1 k ดังนั้นผลรวมของน้ำหนักจะเป็น 1 และสูตรจะเป็น: เราได้เห็นแล้วว่าการใช้งานหลายขั้นตอนนี้ส่งผลให้น้ำหนักที่แตกต่างกัน ด้วยค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังให้ความสำคัญกับค่าเฉลี่ยจากการสังเกตที่ถูกลบออกไปในเวลามากขึ้นจะลดลงด้วยเหตุนี้จึงเน้นเหตุการณ์ที่เกิดขึ้นเมื่อเร็ว ๆ นี้ โดยทั่วไปจะมีการปรับค่าพารามิเตอร์การให้ราบเรียบ alpha lt1 ll1 และสูตรที่ได้รับการแก้ไขไปเป็น: รูปแบบสมมาตรของสูตรนี้จะมีรูปแบบดังนี้: ถ้าน้ำหนักในรูปแบบสมมาตรถูกเลือกเป็นเงื่อนไขของข้อกำหนดของการขยายตัวแบบทวินาม (1212) 2q พวกเขาจะรวมกันเป็น 1 และเมื่อ q กลายเป็นขนาดใหญ่จะใกล้เคียงกับการแจกแจงแบบปกติ นี่คือรูปแบบของการถ่วงน้ำหนักของเคอร์เนลโดยมีฟังก์ชัน Binomial ทำหน้าที่เป็นฟังก์ชันเคอร์เนล การแกว่งสองขั้นตอนที่อธิบายไว้ในหมวดย่อยก่อนหน้านี้คือการจัดเรียงนี้อย่างแม่นยำด้วย q 1 ซึ่งให้น้ำหนัก ในการทำให้เรียบเรียบขึ้นจำเป็นต้องใช้ชุดของน้ำหนักที่รวมกันเป็น 1 และลดขนาดทางเรขาคณิต น้ำหนักที่ใช้มีรูปแบบดังนี้: เพื่อแสดงให้เห็นว่าน้ำหนักเหล่านี้รวมกันเป็น 1 ให้พิจารณาการขยายตัวเป็น 1 เป็นชุด เราสามารถเขียนและขยายนิพจน์ในวงเล็บโดยใช้สูตรทวินาม (1- x) p. โดยที่ x (1-) และ p -1 ซึ่งจะให้: ค่านี้จะให้รูปแบบของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของแบบฟอร์ม: ผลรวมนี้สามารถเขียนเป็นความสัมพันธ์ที่เกิดขึ้นใหม่ซึ่งช่วยลดความซับซ้อนในการคำนวณและหลีกเลี่ยงปัญหาที่ระบบการถ่วงน้ำหนัก ควรมีความยาวไม่ จำกัด สำหรับน้ำหนักที่จะรวมกันเป็น 1 (สำหรับค่าอัลฟ่าเล็กน้อยนี่ไม่ใช่กรณีปกติ) สัญกรณ์ที่ใช้โดยผู้เขียนที่แตกต่างกันจะแตกต่างกันออกไป บางตัวใช้ตัวอักษร S เพื่อระบุว่าสูตรเป็นตัวแปรที่มีความราบเรียบและเขียนว่า: ในขณะที่ทฤษฎีวรรณคดีควบคุมมักใช้ Z แทน S แทนค่าที่ถ่วงน้ำหนักหรือเรียบง่าย (ดูตัวอย่างเช่น Lucas and Saccucci, 1990, LUC1 , และเว็บไซต์ NIST สำหรับรายละเอียดเพิ่มเติมและตัวอย่างการทำงาน) สูตรที่อ้างถึงข้างต้นมาจากผลงานของ Roberts (1959, ROB1) แต่ Hunter (1986, HUN1) ใช้การแสดงออกของรูปแบบ: ซึ่งอาจเหมาะสมกว่าสำหรับการใช้ในขั้นตอนการควบคุมบางอย่าง ด้วยค่า alpha 1 ค่าประมาณเฉลี่ยคือค่าที่วัดได้ (หรือมูลค่าของรายการข้อมูลก่อนหน้า) ด้วยค่าประมาณ 0.5 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของการวัดในปัจจุบันและก่อนหน้า ในรูปแบบการคาดการณ์ S t. มักใช้เป็นประมาณการหรือค่าพยากรณ์ในช่วงเวลาต่อไปนั่นคือค่าประมาณสำหรับ x ณ เวลา t ดังนั้นเราจึงได้แสดงให้เห็นว่าค่าพยากรณ์ที่ t 1 เป็นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบ บวกกับส่วนประกอบที่แสดงถึงข้อผิดพลาดในการทำนายถ่วงน้ำหนักเอปไซลอน เวลา t สมมติว่ามีชุดเวลาและต้องมีการคาดการณ์ค่าอัลฟาต้อง นี้สามารถประมาณจากข้อมูลที่มีอยู่โดยการประเมินผลรวมของข้อผิดพลาดการทำนายกำลังสองได้รับกับค่าที่แตกต่างของ alpha สำหรับแต่ละ t 2,3 การกำหนดค่าแรกที่จะเป็นค่าข้อมูลที่สังเกตได้ครั้งแรก x 1. ในแอ็พพลิเคชันควบคุมค่าของอัลฟามีความสำคัญในการใช้ในการกำหนดขีด จำกัด การควบคุมด้านบนและด้านล่างและมีผลต่อระยะเวลาในการทำงานโดยเฉลี่ย (ARL) ก่อนที่ข้อ จำกัด ในการควบคุมเหล่านี้จะเสีย (ภายใต้สมมติฐานว่าชุดข้อมูลเวลาเป็นชุดของตัวแปรอิสระที่แจกแจงแบบกระจายเดียวกันซึ่งมีความแปรปรวนร่วมกัน) ภายใต้สถานการณ์เช่นนี้ความแปรปรวนของสถิติการควบคุม: คือ (ลูคัสและ Saccucci, 1990): ขีด จำกัด ของการควบคุมมักจะตั้งค่าเป็นทวีคูณที่คงที่ของความแปรปรวนของการไม่ทำงานนี้เช่น - ค่าเบี่ยงเบนมาตรฐาน 3 เท่า ถ้าตัวอย่างเช่น alpha 0.25 และข้อมูลที่ได้รับการตรวจสอบจะถือว่ามีการแจกแจงแบบปกติ N (0,1) เมื่ออยู่ในการควบคุมขีด จำกัด ของการควบคุมจะเป็น - 1.134 และกระบวนการนี้จะถึงหนึ่งหรือขีด จำกัด อื่น ๆ ใน 500 ขั้นตอน โดยเฉลี่ย. Lucas และ Saccucci (1990 LUC1) ได้รับค่า ARLs สำหรับค่า alpha และภายใต้สมมติฐานต่างๆโดยใช้กระบวนการ Markov Chain พวกเขาจัดทำเป็นตารางผลลัพธ์รวมถึงการให้ ARLs เมื่อค่าเฉลี่ยของกระบวนการควบคุมได้รับการเปลี่ยนแปลงโดยค่าเบี่ยงเบนมาตรฐานหลายค่าหลายค่า ตัวอย่างเช่นเมื่อมีการเปลี่ยนแปลง 0.5 กับ alpha 0.25 ค่า ARL จะน้อยกว่า 50 ขั้นตอนเวลา วิธีการที่อธิบายข้างต้นเป็นที่รู้จักกันในชื่อเดียวเรียบ เป็นขั้นตอนที่ใช้ครั้งเดียวกับชุดเวลาและจากนั้นการวิเคราะห์หรือการควบคุมกระบวนการจะดำเนินการในชุดข้อมูลที่เกิดเรียบ หากชุดข้อมูลมีส่วนประกอบของเทรนด์ตามฤดูกาลหรืออาจใช้การทำให้เรียบแบบทวีคูณแบบสองขั้นตอนหรือสามขั้นตอนเพื่อลบลักษณะเหล่านี้ (ดูเพิ่มเติมส่วนของการพยากรณ์อากาศด้านล่างและตัวอย่างการทำงานของ NIST) CHA1 Chatfield C (1975) การวิเคราะห์ไทม์ซีรี่ส์: ทฤษฎีและการปฏิบัติ แชปแมนและฮอลล์, ลอนดอน HUN1 เธ่อเจเอส (1986) ค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลัง J ของ Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) แผนการควบคุมค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ: สมบัติและการเพิ่มประสิทธิภาพ Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) การควบคุมแผนภูมิการทดสอบขึ้นอยู่กับค่าเฉลี่ยเคลื่อนที่ทางเรขาคณิต Technometrics, 1, 239-250

No comments:

Post a Comment